Self‐Tuning n‐Type Bi2(Te,Se)3/SiC Thermoelectric Nanocomposites to Realize High Performances up to 300 °C

نویسندگان

  • Yu Pan
  • Umut Aydemir
  • Fu‐Hua Sun
  • Chao‐Feng Wu
  • Thomas C. Chasapis
  • G. Jeffrey Snyder
  • Jing‐Feng Li
چکیده

Bi2Te3 thermoelectric materials are utilized for refrigeration for decades, while their application of energy harvesting requires stable thermoelectric and mechanical performances at elevated temperatures. This work reveals that a steady zT of ≈0.85 at 200 to 300 °C can be achieved by doping small amounts of copper iodide (CuI) in Bi2Te2.2Se0.8-silicon carbide (SiC) composites, where SiC nanodispersion enhances the flexural strength. It is found that CuI plays two important roles with atomic Cu/I dopants and CuI precipitates. The Cu/I dopants show a self-tuning behavior due to increasing solubility with increasing temperatures. The increased doping concentration increases electrical conductivity at high temperatures and effectively suppresses the intrinsic excitation. In addition, a large reduction of lattice thermal conductivity is achieved due to the "in situ" CuI nanoprecipitates acting as phonon-scattering centers. Over 60% reduction of bipolar thermal conductivity is achieved, raising the maximum useful temperature of Bi2Te3 for substantially higher efficiency. For module applications, the reported materials are suitable for segmentation with a conventional ingot. This leads to high device ZT values of ≈0.9-1.0 and high efficiency up to 9.2% from 300 to 573 K, which can be of great significance for power generation from waste heat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting

In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and t...

متن کامل

Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure

Bi2Te3 is a good thermoelectric compound that can be adjusted to por n-type with corresponding substitutions; however, less progress has been achieved for the property enhancement of n-type Bi2(TeSe)3 compared with p-type (BiSb)2Te3. Textured n-type Bi2(TeSe)3 with an enhanced thermoelectric performance has been developed in this study by combining texturing with in situ nanostructuring effects...

متن کامل

بررسی تغییر ساختـار بلورین (Bi2Te3)0.25 (Sb2Te3)0.75 با درصـد وزنـی Te افـزوده به وسیلـه‌ی AFM, EBSD و XRDو ارتقای عدد شایستگی بلور

(Bi2Te3)0.25(Sb2Te3)0.75 solid solution is a p type thermoelectric compound with optimum efficiency among the (Bi2Te3)x (Sb2Te3)1-x compounds with variable x. Increment of Bi2Te3 segment in the Bi-Sb-Te system decrease in hole concentration, which result in carriers transport tuning, an increment of Seebeck coefficient and decrement of electrical and thermal conductivities. An excess of Telluri...

متن کامل

Rational synthesis of ultrathin n-type Bi2Te3 nanowires with enhanced thermoelectric properties.

A rational yet scalable solution phase method has been established, for the first time, to obtain n-type Bi(2)Te(3) ultrathin nanowires with an average diameter of 8 nm in high yield (up to 93%). Thermoelectric properties of bulk pellets fabricated by compressing the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n-type Bi(2)Te(3)-based...

متن کامل

Highly Porous Thermoelectric Nanocomposites with Low Thermal Conductivity and High Figure of Merit from Large-Scale Solution-Synthesized Bi2 Te2.5 Se0.5 Hollow Nanostructures.

To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi2 Te2.5 Se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017